以重慶地區(qū)某工程高位收水冷卻塔中央豎井左側(cè)集水槽進(jìn)行有限元三維建模,進(jìn)行有限元整體結(jié)構(gòu)計算。集水槽底板、側(cè)壁采用Shell181 三維殼單元,暗框架柱、框架頂梁、拉梁,承臺梁及灌注樁均采用Bea m188 三維梁單元。Shell181 及Bea m188 單元能很好地模擬集水槽各部分構(gòu)件。同時,在后處理時能提取集水槽側(cè)壁、底板、暗框架柱及梁的彎矩、剪力及軸力,方便直接用于結(jié)構(gòu)設(shè)計,進(jìn)行配筋計算。三維模型中shell181 殼單元共有7342 個,Bea m188 梁單元共計782 個。
按給水澄清池環(huán)行集水槽計算公式計算得出堰上水頭為 0. 03 m ,跌水頭為 0. 07 m , h 值按經(jīng)驗(yàn)取值為 0. 1 m。 結(jié)合寶洲污水處理廠二沉池工程實(shí)例,經(jīng)計算孔徑值為 19 mm。 而該項(xiàng)工程開孔為 40 mm ,可以看出與計算值的明顯差異 ,成為導(dǎo)致沉淀后的出水大部分直接從底部平衡孔流出 ,設(shè)計均勻分布的三角堰作用降低的根本原因。為解決三角堰不能均勻集水的現(xiàn)象 ,主要的措施只能是減少平衡孔數(shù)。 按式 ( 2)計算 ,平衡孔數(shù)只有17個。為此本項(xiàng)工程在實(shí)際的運(yùn)行中的平衡孔現(xiàn)已減少了 60個 ,其配水的均勻性及出水水質(zhì)均得到了較大的改善。
集水槽整體位移變形可以看出,集水槽暗框架在⑥軸線變形大,集水槽壁板在①、②與⑤、⑥軸線之間變形大。集水槽的大變形約為14 mm。集水槽壁板內(nèi)力分析取①、②軸線跨中(X=10.4 m)、⑤、⑥軸線跨中(X=43.2 m) 及沿集水槽高度方向(Z=5.0 m) 處進(jìn)行內(nèi)力分析。集水槽壁板豎向、水平向均同時承受拉力和彎矩。水平向所受拉力大于豎向,越靠近集水槽底部,水壓力越大,水平向所受約束也約大,所受的拉力越大,大拉了為657 kN/m,彎矩大約-267 kN · m/m。